If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2+10t-100=0
a = 4; b = 10; c = -100;
Δ = b2-4ac
Δ = 102-4·4·(-100)
Δ = 1700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1700}=\sqrt{100*17}=\sqrt{100}*\sqrt{17}=10\sqrt{17}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{17}}{2*4}=\frac{-10-10\sqrt{17}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{17}}{2*4}=\frac{-10+10\sqrt{17}}{8} $
| 3x=7000+x | | 28x-1+55=180 | | 2b-15=-30 | | 78=8x+7+4x-1 | | 710-35x=570-25x | | 6.09=3r+-3.3 | | -11+m/14=-10 | | 9a=-34 | | 8+k/6=7 | | 3(2y+3)=4y3 | | 10=n/5+8 | | 42x+1=82x-1 | | 3x+9-6x=15 | | 3n-3=-33 | | -2n+4=16 | | 5f+176=2f+60 | | 12=11+r/14 | | -1-3n=26 | | 14x+2=12x+10 | | -192=-8x | | -40=n-14 | | 4.2=2k-2 | | (1.50+3p)=2.50 | | 6(x+4)+1=x-5 | | 29=r/24 | | 98+9+5+8x+6x=180 | | (6p+5)=(6p-5) | | 180=5x-48 | | X^6=32x | | 5x+7=-3x+22 | | 3k-3k+2k=18 | | 3.6+10m=6.81 |